Functional renormalization group for ultracold fermions

Yuya Tanizaki

Department of Physics, The University of Tokyo
Theoretical Research Division, Nishina Center, RIKEN

Mar. 6, 2014 @ Lunch seminar of RBRC

Collaborators: Gergely Fejős (RIKEN), Tetsuo Hatsuda (RIKEN)

Introduction

Examples many-body fermionic systems

Many-body fermionic systems with nontrivial phases:

- Many-electron system: metal, insulators, magnetism,
- Nucleons: nuclear, nucleon superfluid inside neutron stars,
- Quarks in the high-density QCD

Microscopic model (Hubbard model, lattice spin model, lattice gauge theory)

Effective field theory

Experiments & Phenomenology

Microscopic model (Hubbard model, lattice spin model, lattice gauge theory)

Requirements for EFTs:

- Be simpler than original microscopic models
- Emerge from renormalizable theories, or lattice models.

Microscopic model (Hubbard model, lattice spin model, lattice gauge theory)

Experiments & Phenomenology

Requirements for EFTs:

- Be simpler than original microscopic models
- Emerge from renormalizable theories, or lattice models.

Phenomenon	Effective Field Theory	Microscopic Model
Superconductivity	Ginzburg-Landau theory	BCS theory
Antiferromagnetism	Nonlinear sigma model	Heisenberg model
χ -symmetry breaking	NJL/QM model	QCD

Simple forms of effective action:

$$\mathcal{L} = \overline{\psi}G^{-1}(\partial_{\tau}, \nabla)\psi + g(\overline{\psi}\psi)^{2}$$

or

$$\mathcal{L} = \overline{\psi} G^{-1}(\partial_{\tau}, \nabla) \psi + \phi G_{\phi}^{-1}(\partial_{\tau}, \nabla) \phi + g_{\phi\psi} \phi \overline{\psi} \psi$$

At low energies, interactions become strong due to dynamical effects.

⇒ Nonperturbative methods of QFT

Important!

Nonperturbative techniques of field theories must be developed in order to describe IR physics using EFT.

5 / 32

Cold atomic physics

Ultracold fermions provides examples of strongly-correlated fermions. High controllability can tune effective couplings with real experiments!

(Typically, $T\sim 100 {\rm nK}$, and $n\sim 10^{11-14}~{\rm cm}^{-3}$)

BCS-BEC crossover

EFT: Two-component fermions with an attractive contact interaction.

$$S = \int d^4x \left[\overline{\psi}(x) \left(\partial_\tau - \frac{\nabla^2}{2m} - \mu \right) \psi(x) + g \overline{\psi}_1(x) \overline{\psi}_2(x) \psi_2(x) \psi_1(x) \right]$$

(Eagles 1969, Legget 1980, Nozieres & Schmitt-Rink 1985)

Question

Is it possible to treat EFT systematically to describe the BCS-BEC crossover?

Purpose of this talk

- Develop the functional renormalization group (FRG) method for many-body fermions.
- Study the BCS-BEC crossover using the developed formalism of FRG.
 - BCS side: Connection of FRG & BCS theory + GMB correction is made clear. Systematic improvement is considered to go beyond it!
 - BEC side: Describe the Bose gas of dimers /wo auxiliary field methods.
 This requires a new non-perturbative formalism of FRG.
 - Describe the whole region of the BCS-BEC crossover in this formalism.

Functional renormalization group

General framework of FRG

Generating functional of connected Green functions:

$$\exp(W[J]) = \int \mathcal{D}\Phi \exp(-S[\Phi] + J \cdot \Phi).$$

infinite dimensional integration!

Possible remedy: Construct nonperturbative relations of Green functions! (⇒ Functional techniques)

- Dyson-Schwinger equations
- 2PI formalism
- Functional renormalization group (FRG)

Flow equation of FRG

 $\delta S_k[\Phi]$: Some function of Φ with a parameter k. (IR regulator)

k-dependent Schwinger functional

$$\exp(W_k[J]) = \int \mathcal{D}\Phi \exp\left[-\left(S[\Phi] + \delta S_k[\Phi]\right) + J \cdot \Phi\right]$$

Flow equation

$$-\partial_k W_k[J] = \langle \partial_k \delta S_k[\Phi] \rangle_J$$

= \exp(-W_k[J]) \partial_k(\delta S_k) [\delta/\delta J] \exp(W_k[J])

Consequence

We get a (functional) differential equation instead of a (functional) integration!

Conventional approach: Wetterich equation

At high energies, perturbation theory often works well.

⇒ Original fields control physical degrees of freedom.

IR regulator for bare propagators (\sim mass term): $\delta S_k[\Phi] = \frac{1}{2}\Phi_\alpha R_k^{\alpha\beta}\Phi_\beta$.

Flow equation of 1PI effective action $\Gamma_k[\Phi]$ (Wetterich 1993)

$$\partial_k \Gamma_k[\Phi] = \frac{1}{2} \mathrm{STr} \frac{\partial_k R_k}{\delta^2 \Gamma_k[\Phi]/\delta \Phi \delta \Phi + R_k} = \frac{\partial_k R_k}{\delta^2 \Gamma_k[\Phi]/\delta \Phi \delta \Phi + R_k}$$

FRG beyond the naive one: vertex IR regulator

In the infrared region, collective bosonic excitations emerge quite in common. (e.g.) Another low-energy excitation emerges in the $\Phi\Phi$ channel

Vertex IR regulator: $\delta S_k = \frac{1}{4!} g_k^{\alpha\beta\gamma\delta} \Phi_\alpha \Phi_\beta \Phi_\gamma \Phi_\delta.$ $E + \frac{1}{4!} g_k \Phi^4$ $E_b/2$ $E_b/2$ $E_b/2$ $E_b/2$

Flow equation with the vertex IR regulator (YT, PTEP2014, 023A04)

Optimization

Choice of IR regulators δS_k is arbitrary.

Optimization:

Choose the "best" IR regulator, which validates systematic truncation of an approximation scheme.

Optimization criterion (Litim 2000, Pawlowski 2007):

- IR regulators δS_k make the system gapped by a typical energy $k^2/2m$ of the parameter k.
- High-energy excitations $(\gtrsim k^2/2m)$ should decouple from the flow of FRG at the scale k.
- ullet Choose δS_k stabilizing calculations and making it easier.

Application of fermionic FRG to the BCS-BEC crossover

BCS-BEC crossover

Model:

$$S = \int d^4x \left[\overline{\psi}(x) \left(\partial_\tau - \frac{\nabla^2}{2m} - \mu \right) \psi(x) + g \overline{\psi}_1(x) \overline{\psi}_2(x) \psi_2(x) \psi_1(x) \right]$$

$$(n = k_F^3/3\pi^2, \, \varepsilon_F = k_F^2/2m)$$

Purpose of this talk

Nonperturbative FRG can describe the BCS-BEC crossover /wo auxiliary fields!

General strategy

We will calculate T_c/ε_F and μ/ε_F .

⇒ Critical temperature and the number density must be calculated.

We expand the 1PI effective action in the symmetric phase:

$$\Gamma_{k}[\overline{\psi},\psi] = \beta F_{k}(\beta,\mu) + \int_{p} \overline{\psi}_{p}[G^{-1}(p) - \Sigma_{k}(p)]\psi_{p}$$
$$+ \int_{p,q,q'} \Gamma_{k}^{(4)}(p)\overline{\psi}_{\uparrow,\frac{p}{2}+q}\overline{\psi}_{\downarrow,\frac{p}{2}-q}\psi_{\downarrow,\frac{p}{2}-q'}\psi_{\uparrow,\frac{p}{2}+q'}.$$

Critical temperature and the number density are determined by

$$\frac{1}{\Gamma_0^{(4)}(p=0)} = 0, \qquad n = \int_p \frac{-2}{G^{-1}(p) - \Sigma_0(p)}.$$

BCS side

Case 1 Negative scattering length $(k_F a_s)^{-1} \ll -1$.

⇒ Fermi surface exists, and low-energy excitations are fermionic quasi-particles.

Shanker's RG for Fermi liquid (Shanker 1994)

Functional implementation of Shanker's RG

RG must keep low-energy fermionic excitations under control.

$$\Rightarrow \delta S_k = \int_p \overline{\psi}_p R_k^{(f)}(\boldsymbol{p}) \psi_p$$
 with

$$R_k^{(f)}(\boldsymbol{p}) = \mathrm{sgn}(\xi(\boldsymbol{p})) \left(\frac{k^2}{2m} - |\xi(\boldsymbol{p})|\right) \theta\left(\frac{k^2}{2m} - |\xi(\boldsymbol{p})|\right)$$

Flow equation of the self-energy Σ_k and the four-point 1PI vertex $\Gamma_k^{(4)}$:

$$\partial_k$$
 \longrightarrow $=$

$$\partial_k$$
 = + +

Flow of fermionic FRG: effective four-fermion interaction

- ullet Particle-particle loop \Rightarrow RPA & BCS theory
- ullet Particle-hole loop gives screening of the effective coupling at $k\sim k_F$

(YT, G. Fejős, T. Hatsuda, arXiv:1310.5800)

 $T_c^{\rm BCS} = \varepsilon_F \frac{8e^{\gamma_E-2}}{\pi} e^{-\pi/2k_F|a_s|} \Rightarrow T_c^{\rm BCS}/2.2$. (Gorkov, Melik-Barkhudarov, 1961)

Flow of fermionic FRG: self-energy

Local approximation on self-energy: $\Sigma_k(p) \simeq \sigma_k$.

(YT, G. Fejős, T. Hatsuda, arXiv:1310.5800)

- ullet High energy: $\sigma_k \simeq$ (effective coupling)imes(number density) $\sim 1/k$
- Low energy: $\partial_k \sigma_k \sim 0$ due to the particle-hole symmetry.

Transition temperature and chemical potential in the BCS side

(YT, G. Fejős, T. Hatsuda, arXiv:1310.5800)

Consequence

- Critical temperature T_c/ε_F is significantly reduced by a factor 2.2 in $(k_Fa_s)^{-1}\lesssim -1$, and the self-energy effect on it is small in this region.
- $\mu(T_c)/\varepsilon_F$ is largely changed from 1 even when $(k_F a_s)^{-1} \lesssim -1$.

BEC side

Case 2 Positive scattering length : $(k_F a_s)^{-1} \gg 1$

 \Rightarrow Low-energy excitations are one-particle excitations of composite dimers.

BEC side

Case 2 Positive scattering length : $(k_F a_s)^{-1} \gg 1$

⇒ Low-energy excitations are one-particle excitations of composite dimers.

Several approaches for describing BEC of composite bosons. (Pros/Cons)

- Auxiliary field method (Easy treatment within MFA/ Fierz ambiguity in their introduction)
- Fermionic FRG (
 — We develop this method!)
 (Unbiased and unambiguous/ Nonperturbative treatment is necessary)

Vertex IR regulator & Flow equation

Optimization can be satisfied with the vertex IR regulator:

$$\delta S_k = \int_p \frac{g^2 R_k^{(b)}(\mathbf{p})}{1 - g R_k^{(b)}(\mathbf{p})} \int_{q,q'} \overline{\psi}_{\uparrow,\frac{p}{2} + q} \overline{\psi}_{\downarrow,\frac{p}{2} - q} \psi_{\downarrow,\frac{p}{2} - q'} \psi_{\uparrow,\frac{p}{2} + q'}$$

Flow equation up to fourth order (YT, PTEP2014 023A04, YT, arXiv:1402.0283):

Effective boson propagator in the four-point function:

$$\frac{1}{\Gamma_k^{(4)}(p)} = -\frac{m^2 a_s}{8\pi} \left(ip^0 + \frac{p^2}{4m} \right) - R_k^{(b)}(p)$$

Flow of fermionic FRG: self-energy

Flow equation of the self-energy:

$$\partial_k \Sigma_k(p) = \int_l \frac{\partial_k \Gamma_k^{(4)}(p+l)}{il^0 + l^2/2m + 1/2ma_s^2 - \Sigma_k(l)}.$$

If $|\Sigma_k(p)| \ll 1/2ma_s^2$,

$$\Sigma_{k}(p) \simeq \int_{l} \frac{\Gamma_{k}^{(4)}(p+l)}{il^{0} + l^{2}/2m + 1/2ma_{s}^{2}}$$

$$\simeq \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} \frac{(8\pi/m^{2}a_{s})n_{B}(\mathbf{q}^{2}/4m + \frac{m^{2}a_{s}}{8\pi}R_{k}^{(b)}(\mathbf{q}))}{ip^{0} + \frac{\mathbf{q}^{2}}{4m} + \frac{m^{2}a_{s}}{8\pi}R_{k}^{(b)}(\mathbf{q}) - \frac{(\mathbf{q}+\mathbf{p})^{2}}{2m} - \frac{1}{2ma_{s}^{2}}}.$$

Estimate of $|\Sigma_k(p)|$:

$$|\Sigma_k(p)| \lesssim \frac{1}{2ma_s^2} \times (\sqrt{2mT}a_s)^3 \times n_B(k^2/4m).$$

 \Rightarrow Our approximation is valid up to $(k^2/2m)/T \sim (k_F a_s)^3 \ll 1$.

Critical temperature in the BEC side

Number density:

$$n = \int_{p} \frac{-2}{ip^{0} + \mathbf{p}^{2}/2m + 1/2ma_{s}^{2} - \Sigma_{0}(p)}$$
$$\simeq \frac{(2mT_{c})^{3/2}}{\pi^{2}} \sqrt{\frac{\pi}{2}} \zeta(3/2).$$

Critical temperature and chemical potential:

$$T_c/\varepsilon_F = 0.218, \qquad \mu/\varepsilon_F = -1/(k_F a_s)^2.$$

 \Rightarrow Transition temperature of BEC.

Consequence

FRG with vertex regulator provides a nonperturbative description of many-body composite particles.

fermionic FRG for the BCS-BEC crossover

We discuss the whole region of the BCS-BEC crossover with fermionic FRG. ⇒ Combine two different formalisms appropriate for BCS and BEC sides.

Minimal set of the flow equation for Σ_k and $\Gamma_k^{(4)}$:(YT, arXiv:1402.0283)

Flow of fermionic FRG with multiple regulators

Flow of four-point vertex:

Important property: fermions decouple from RG flow at the low energy region.

- In BCS side, fermions decouples due to Matsubara freq. $(k^2/2m \lesssim \pi T)$.
- In BEC side, fermions decouples due to binding E. $(k^2/2m \lesssim 1/2ma_s^2)$.

Approximation on the flow of the four-point vertex at low energy:

Flow of self-energy:

At a low-energy region, the above approx. gives

$$\partial_k$$
 \longrightarrow $=$ ∂_k \simeq ∂_k

Qualitative behaviors of the BCS-BEC crossover from f-FRG

Approximations on the flow equation have physical interpretations.

Four-point vertex: Particle-particle RPA. The Thouless criterion $1/\Gamma^{(4)}(p=0)=0$ gives

$$\frac{1}{a_s} = -\frac{2}{\pi} \int_0^\infty \sqrt{2m\varepsilon} d\varepsilon \left[\frac{\tanh \frac{\beta}{2} (\varepsilon - \mu)}{2(\varepsilon - \mu)} - \frac{1}{2\varepsilon} \right]$$

 \Rightarrow BCS gap equation at $T = T_c$.

Number density: $n = -2 \int 1/(G^{-1} - \Sigma)$.

$$n = -2 \int_{p}^{(T)} G(p) - \frac{\partial}{\partial \mu} \int_{p}^{(T)} \ln \left[1 + \frac{4\pi a_s}{m} \left(\Pi(p) - \frac{m\Lambda}{2\pi^2} \right) \right].$$

 \Rightarrow Pairing fluctuations are taken into account. (Nozieres, Schmitt-Rink, 1985)

Consequence

We established the fermionic FRG which describes the BCS-BEC crossover.

Summary & Outlook

Summary

- EFT is a powerful approach to strongly-correlated fermions.
 - \Rightarrow More powerful analytical method is still required for intuitive, unbiased and systematic understandings.
- Fermionic FRG is a promising formalism.
 - \Rightarrow Separation of energy scales can be realized by optimization.
 - ⇒ Very flexible form for various approximation schemes.
- Fermionic FRG is applied to the BCS-BEC crossover.
 - \Rightarrow BCS side: GMB correction + the shift of Fermi energy from μ .
 - ⇒ BEC side: BEC without explicit bosonic fields.
 - \Rightarrow whole region: Crossover physics is successfully described at the quantitative level with a minimal setup on f-FRG.

Outlook

- Perform numerical computations for the whole region of the BCS-BEC crossover.
 - ⇒ This explicitly confirms that our formalism can be systematically improvable to describe the crossover physics.
- Application of fermionic FRG to other low-density strongly-correlated fermions.
 - e.g., Neutron superfluid, dipolar fermions in ultracold atoms, ...